Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 871021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401604

RESUMO

Biochar is a kind of organic matter that can be added into the soil as a soil amendment to improve its quality. What are the effects of using biochar on purple soil and soybeans? Can the use of biochar reduce the use of fertilizers? This is our concern. Therefore, we carried out this study. The objectives of our study were to evaluate the effects of biochar, inorganic and organic fertilizer application on plant growth, chlorophyll content, photosynthetic gas exchange, and yield of soybean as well as fertility and microbial community in purple soil, and to appraise the possible reduction rate of inorganic fertilizer under the biochar application. A pot experiment was conducted with three levels of biochar, two levels of inorganic fertilizer, and two levels of organic fertilizer in a randomized complete block. The results indicated that the low rate of biochar together with half rate of inorganic fertilizer and organic fertilizer increased the plant growth of soybean. Meanwhile, the chlorophyll content, root growth, and yield of soybean were increased by 16.61, 197.73, and 96.7%, respectively, with biochar compared with no biochar. The high rate of biochar with half rate of inorganic fertilizer and organic fertilizer can promote the exchange of photosynthetic gas in soybean, and the photosynthetic rate increased by 45.25% compared with the blank control. At the full pod stage, the nitrogen content, phosphorus content, and potassium content of the whole plant under the high rate of biochar were 28.35, 13.65, and 28.78%, respectively, higher than that of the blank control. The application of biochar increased nitrogen, phosphorus, and potassium uptake of soybean. The high rate of biochar with half rate of inorganic fertilizer and organic fertilizer can improve soil nutrient content and soil microbial community. Compared with no biochar treatments, total organic carbon (TOC) increased by 740.28%, and cation exchange capacity (CEC) increased by 54.17%. Phospholipid fatty acid (PLFA) increased by 65.22%, and all kinds of soil microorganisms increased to varying degrees. In conclusion, the application of biochar can reduce the use of organic and inorganic fertilizers, improve the agronomic traits and yield of soybean, and play a positive role in soil nutrients and soil microorganisms.

2.
Sci Rep ; 11(1): 22136, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764409

RESUMO

Tobacco is be sensitively affected by chilling injury in the vigorous growth period, which can easily lead to tobacco leaf browning during flue-curing and quality loss, however, the physiological response of tobacco in the prosperous period under low temperature stress is unclear. The physiological response parameters of two tobacco varieties to low temperature stress were determined. The main results were as follows: ① For tobacco in the vigorous growing period subjected to low-temperature stress at 4-16 °C, the tissue structure of chloroplast changed and photosynthetic pigments significantly decreased compared with each control with the increase of intensity of low-temperature stress. ② For tobacco in the vigorous growing period at 10-16 °C, antioxidant capacity of the protective enzyme system, osmotic adjustment capacity of the osmotic adjusting system and polyphenol metabolism in plants gradually increased due to induction of low temperature with the increase of intensity of low-temperature stress. ③ Under low-temperature stress at 4 °C, the protective enzyme system, osmotic adjusting system and polyphenol metabolism of the plants played an insignificant role in stress tolerance, which cannot be constantly enhanced based on low-temperature resistance at 10 °C. This study confirmed that under the temperature stress of 10-16 °C, the self-regulation ability of tobacco will be enhanced with the deepening of low temperature stress, but there is a critical temperature between 4 and 10 °C. The self-regulation ability of plants under low temperature stress will be inhibited.


Assuntos
/fisiologia , Estresse Fisiológico/fisiologia , Antioxidantes/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/fisiologia , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Polifenóis/metabolismo , /metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA